Evaluation of Local 3-D Point Cloud Descriptors in Terms of Suitability for Object Classification

نویسندگان

  • Jens Garstka
  • Gabriele Peters
چکیده

This paper investigates existing methods for local 3-D feature description with special regards to their suitability for object classification based on 3-D point cloud data. We choose five approved descriptors, namely Spin Images, Point Feature Histogram, Fast Point Feature Histogram, Signature of Histograms of Orientations, and Unique Shape Context and evaluate them with a commonly used classification pipeline on a large scale 3-D object dataset comprising more than 200000 different point clouds. Of particular interest are the details of the choice of all parameters associated with the classification pipeline. The point clouds are classified by using support vector machines. Fast Point Feature Histogram proves to be the best descriptor for the method of object classification used in this evaluation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel method for locating the local terrestrial laser scans in a global aerial point cloud

In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...

متن کامل

A novel Local feature descriptor using the Mercator projection for 3D object recognition

Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

D 2 . 1 – State of the Art Report on 3 D Object Digitisation and Shape Matching / Retrieval Methods for Unstructured 3 D data

D2.1 presents the STAR on 3D object digitisation, shape matching and retrieval methods, along with local shape descriptors for unstructured 3D data. The first part of this report focuses on current CH 3D object digitisation techniques and practices, including the handling of special CH object forms, technologies, typical acquisition problems related to the task at hand and an evaluation of rele...

متن کامل

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016